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Properties of highly clustered networks
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We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable
clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in
the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic
processes within the model and find that clustering decreases the size of epidemics, but also decreases the
epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate
sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.
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I. INTRODUCTION Il. THE MODEL

. . ... There is empirical evidence that clustering in networks
In recent years there has been considerable interest withit.cos hecause the vertices are divided into grdasig

the physics community in the structure and dynamics of netyith a high density of edges between members of the same
works, with applications to the Internet, the world-wide web,group, and hence a high density of triangles, even though the
citation networks, and social and biological netwofks-3].  density of edges in the network as a whole may be low. Our
Two significant properties of networks have been particularlynodel is perhaps the simplest and most obvious realization
highlighted. First, one observes for most networks that thef this idea. We describe it here in the anthropomorphic lan-
degree distribution is highly non-Poissonigh-6]. (A net-  guage of social networks, although our arguments could be
work consists of a set of nodes or “vertices” joined by lines ?pphed to any network that has an appropriate group struc-
or “edges,” and the degree of a vertex is the number ofU'®: . o o .

edges attached to that verteklistograms of vertex degree We consider a network ol individuals divided intoM

for many networks show a power-law form with an exponentgrOUpS-' A social netwqu, for e_xample, might be diyided up
according to the location, family ties, occupation, interests,

typically between—2 and —3, while other networks may anq 5o forth, of its memberéMany networks are indeed
have exponential or truncated power-law distributions. Secknown to be divided into such groups9].) Individuals can
ond, it is found that most networks have a high degree obelong to more than one group, the groups they belong to
transitivity or clustering, i.e., there is a high probability that being chosen, in our model, at random. Individuals are not
“the friend of my friend is also my friend|7]. In topologi-  necessarily acquainted with all other members of their
cal terms, this means that there is a heightened density gfroups. If two individuals belong to the same group then
loops of length three in the network, and more generally it isthere is a probabilityp that they are acquainted amg=1
found that networks have a heightened density of short loops p that they are not; if they have no groups in common then
of various lengthg8]. they are not acquaintedA more sophisticated model, in

It is now well understood how to calculate the propertieswhich there are many nested levels of groups within groups
of networks with arbitrary degree distributiof8—13], but ~ and a spectrum of acquaintance probabl!mes depending on
where clustering is concerned our understanding is muck€se levels, has been proposed and studied by Watts, Dodds,
poorer. Most of the standard techniques used to solve ne"d Newmari20] and independently by Kleinbefg@1]. For
work models break down when clustering is introduced,thIS paper, ht_)wever, we confl_n_e ourselves o the simpler
obliging researchers to turn to numerical methbd44-14. cage) In addition to th.? prqba.bmt.)p, the_model IS param-

In this paper, we present a plausible network model thaftrized by two probability distributions:; is the probability

incorporates both non-Poisson degree distributions and nofat an individual belongs to groups ands, is the prob-

trivial clustering, and which is exactly solvable for many of ability Lhat a_gro”up ﬁontairgje lindiviguals. ded bond
its properties, including component sizes, percolation thresh- Mathematically, the model can be regarded as a bond per-

old, and clustering coefficient. Our results show that cluster-cOlatlon process on the one-mode projection of a bipartite

ing can have a substantial effect on the large-scale structuf@ndom graph. The structure of individuals and groups forms

of networks, and produces behaviors that are both quantité- € _bipartite graph, the netwqu .OT shared groups is the pro-
tively and qualitatively different from the simple nonclus- Jjection of that graph onto the individuals alone, and the prob-
tered case. ability p that one of the possible contacts in this projection is

The outline of the paper is as follows. In Sec. Il we deﬁneactually realized corresponds to a bond percolation process

our model and in Sec. Il we derive exact expressions for £ the projection. See Fig. 1.
variety of its properties. In Sec. IV we discuss the form of

these expressions for some sensible choices of the param-
eters, and also consider the behavior of epidemic processes We can derive a variety of exact results for our model in
within our model. In Sec. V we give our conclusions. the limit of large size using generating function methods.

Ill. ANALYTIC DEVELOPMENTS
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=

Averaging over group size, the full generating function for
the neighbors in a single group is '37_,ns[pz+q]" !
=g,(pz+q), and for the neighbors of a single person is
fo(g1(pz+Qq)). This allows us to calculate the degree distri-
bution for any giverr,, ands,, and by judicious choice of
these fundamental distributions, we can arrange for the de-
gree distribution to take a wide variety of forms. We give
some examples shortly. The mean deg¢ke of an indi-
vidual in the network is given by

(ky=[d,fo(g1(pz+a))],—1=pugi(1). (4

B. Clustering coefficient

The clustering coefficien€ is a measure of the level of
clustering in a network7]. It is defined as the mean prob-
ability that two vertices in a network are connected, given
that they share a common network neighbor. Mathematically,
it can be written as three times the ratio of the number of
trianglesN, in the network to the number of connected
triples of verticedN3 [12]. In the present case, we have

N =EN 3t0(1)g7(1)
£2=6 pP~To(1)g:(1),

1
Na=5NP?{fe([g1(D)]P+ f5(1)gi(1)}, )

FIG. 1. The structure of the network model described in thiSand hence the C|ustering coefficient is
paper.(a) We represent individualéA—L) and the group$l-5) to

which they belong with a bipartite graph structufte. The bipartite 3N, fo(1)g7(1)
graph is projected onto the individuals onlg) The connections C= N. P ; YT, ——=pCy, (6)
between individuals are chosen by bond percolation on this projec- 3 fo(D91(1)]°+fo(1)g1(1)

tion with bond occupation probability. The net result is that indi- ) ) . )
viduals have probabilitp of knowing others with whom they share Where C,, is the clustering coefficient of the simple one-
a group. mode projection of the bipartite graph, Fig(bl [12]. In
other words, one can interpolate smoothly and linearly from
There are four fundamental generating functions that we wilC=0 to the maximum possible value for this type of graph,
use: simply by varyingp. (In the limit C=0, our model becomes
equivalent to the standard unclustered random graphs studied
* * previously[9,12].) The average number of groups to which
fo(2)= >, 2" fu(2)=p" ' mr,z"% (D people belong and the paramegegive us two independent
m=0 m=0 parameters that we can vary to allow us to cha@gehile
keeping the mean degreg) constant.(Other parameter
choices are also possible, but these are perhaps the simplest
to work with,) Alternatively, and perhaps more logically, we
can regardC and (k) as the defining parameters for the

where u==,mr,, and v=3ns, are the mean numbers of Model and calculate the appropriate values of other quanti-

groups per person and people per group, respectively. ties from these. o _
Thelocal clustering coefficienC; for a vertexi has also

been the subject of recent study; is defined to be the

fraction of pairs of neighbors afthat are neighbors also of
Consider a randomly chosen persdnwho belongs to each othef7]. For a variety of real-world network€; is

some number of groups. The numbej of A’'s acquaintan- found to fall off with degreek; of the vertex asCi~ki’1

ces within one particular group of sizeis binomially dis-  [17,18. This behavior is reproduced nicely by our model.

tributed according tor(jl)p‘q“‘l‘l. We represent this dis- Vertices with higher degree belong to more groups in propor-

tribution by its generating function: tion to k; (provided we keep the mean group size fixed

go(z)=n§O $nZ", gl<z>=v-1n§0 ns,2" % (2

A. Degree distribution
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while the number of pairs of their neighbors3k;(k;—1),
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TABLE 1. PolynomialsP(k|k) for values ofk up to 10.

and the combination gives precisely~ ki_l ask; becomes

large. P(k|k)
1 1
C. Component structure 2 P
To solve for the component structure of the model, we3 3p’q+p°

focus on acquaintance patterns within a single group. Supt
pose persoi belongs to a group af people. We would like 5
to know how many individualé\ is connected to within that
group, either directlyvia a single edgeor indirectly (via 6
any path through other members of the grouget P(k|n)

be the probability that verte& belongs to a connected clus-
ter of k vertices in the group, including itself. We have 7

P(KIn)=| i)q““—k)P(klk), )
which follows since we can make an appropriate graph of
labeled vertices by taking a graph lofertices, all of which
A'is connected to, and addimg- k others to it, which we can
do in ({_1) distinct ways, each with probabilitg“"~¥ (the
probability that none of the newly added vertices connects to
any of thek old vertices.

Probabilities P(k|k) are polynomials inp of order s
=1k(k—1), which can be written in the form 9

P(klk)=|§0 Mip'gs!, ®

whereM|k is the number of labeled connected graphs With
vertices and edges. While some progress can be made in
evaluating thelk/l|k by analytic methodg¢see Appendix A the
resulting expressions are poorly suited to mechanical enu-
meration ofP(k|k). For practical purposes, it is simpler to
observe that

k—1

P(k|k)=1—|20 P(l|k), (99 10

which, in combination with Eq(7), allows us to evaluate
P(k|Kk) iteratively, given the initial conditiofP(1|1)=1. In
Table | we give the first fewP(k|k) for k up to 10.

The generating function for the number of vertices to
which A is connected, by virtue of belonging to this group of
sizen, is

n—-1
( K 1) q“""RP(k[k)Z* .
(10

hn<z)=k§1 P(kln)zZ“"t= >

k=1

Notice the appearance af . This is a generating function
for the number of verticeé is connected to excluding itself.
Averaging over the size distribution of groups then gives

16p3g3+ 15p*q2+ 6 pSq-+p®

125p*q®+222p°q°+ 205p°q*+120p" g3+ 45p8q?
+10p°q+p*°

1296p°q*°+3660p°q°+5700p’qé+ 6165p8q’
+4945p°q°+2997p'%°+ 1365p*'q* + 455p*g°
+105p*%g* +15p*g+p™

16807p8q*S+ 68295p’ g4+ 156555p8q 3+ 258125p°q*?
+331506p %+ 343140p%q 0+ 290745p%%g°
+202755 %%+ 116175p%q" + 54257p*°q°
+20349p*%q°+ 5985p7q*+ 1330p*8q3+210p%?
+21 pZOq + le

262144p7q?+ 143656889%°+ 4483360p°q*°
+1023036(0' %8+ 186021360+ 2804407 P %6
+ 35804384 %15+ 3918384 g *+ 370076560 %9
+30258935'%q %+ 21426300 g+ 1311247 80
+69052200%°9°+ 3107937%2% %+ 1184032p%'q’
+376740p%%q%+98280p%%q° + 204 75p%q* + 3276p>°g>
+378p%%?+ 28 p?'q+ p*

478296828+ 33779340 °q%"+ 136368414 %6

+ 405918324 q%>+ 974679363 %9
+196999437H%3g?% + 343188900( *q??

+ 52286275441+ 70328429016 %°
+8403710364 170+ 8956859646415
+853529418(p %7+ 727989236 2% 10
+555724548®%'q'%+ 37929065042%q**
+230990508(%%q*® + 1251493425 %%q*?

+ 6007758125+ 2541834542510
+94143028270° + 30260331p%q°

+83476802°q" +19477920%°q%+376992p°%°
+58905p3%* + 7140p*%y* + 630pi9? + 36 p*°q + p*°
10000000(°q36+ 88010784(p %35+ 443207520( 1q3*
+ 16530124800 %03+ 5008898160(p %2
+128916045720 g3+ 288982989009 °¢°
+573177986865%q2°+ 10166627468251'g%8
+1624745199919%%"+ 2352103292079 °%6
+3096620034795%°q?>+ 371788991365p5%19%*
+407871603090p%%q?%+ 409359493422p%%q?2
+3761135471805%q2 '+ 316386200321 »?5%°
+243582017805p%°q %+ 171494304639p%7q8
+1102765999275%%q 7+ 646542946125

+ 3448479476645+ 16686756504p'q**

+ 73005619999 %%+ 2875995034 5H % *?
+1015058961(>q*! +3190186926¢%q°
+886163129°%%°+ 2155531958
+4537962(0q" + 81450600°%°

+122175%%%° +148995p*q*+14190p*%°
+990p*3q2+ 45 p*q+ p*®

h(z)=v 1=,ns,hn(2), and the total number of others to
whom A is connected via all the groups they belong to is

generated by5,(z) = fy(h(z)), wherefy(z) is defined in Eq.  distribution of other groups to which such an individual be-
(1). If we reach an individual by following a randomly cho- longs is generated by the functidn(z) in Eqg. (1), and the
sen edge, then we are more likely to arrive at individualsnumber of other individuals to which they are connected is
who belong to a large number of groups. This means that thgenerated byz,(z)=f,(h(z2)).
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Armed with these results, we can now calculate a variety L R B e . T T
of quantities for our model. We focus on two in particular, r C=0
the position of the percolation threshold and the size of the
giant component. The distribution of the number of individu-
als one step away from persénis generated by the function
Go(2), while the number of individuals two steps away is
generated by5,(G4(z)). (In this case, a “step” includes all
people who can be reached by any path via the individuals in
a single group. This definition is necessary to make the in-
dependence assumptions of the generating function formal-
ism correct) There is a giant component in the network if ol
and only if the average number of individuals two steps 0 02 04 06 08 0 02 04 06
away exceeds the average number of individuals one step transmissibility T
away [12]. (This is a natural criterion: it implies that the
number of people reachable is increasing with distgnce. FIG. 2. Right panel: the size of the giant component of the graph
Thus, there is a giant component {f9,(Gy(G1(2)) as a function of clustering coefficient for the Poisson case with

—Gy(2))],-1>0. Substituting forG, and G;, this result ~ 9roup sizev=10 and mean degreé&)=>5. Left panel: the size of
can be written an epidemic outbreak for a susceptible/infective/recovered model

on our network as a function of transmissibilify for values ofC
f1(1)h’(1)>1. (11) from 0 to 0.6 in steps of 0.1.

06 ]

0.4 — 7

02

size of giant component §

clustering coeff. C

dant edges are in a sense wasted, and the percolation prop-

When this condition is satisfied and there is a giant comerties of the network are similar to those for a network with
ponent, we definal to be the probability that one of the fewer edges.

individuals to whomA is connected isiot a member of this
giant componentA is also not a member provided all of its
neighbors are not so thatsatisfies the self-consistency con-

dition u=G,(u). Then the size of the giant component is A topic of particular interest in the recent literature has
given by S=1—Gg(u). been the spread of disease over networks. The classic
susceptible/infective/recovered or SIR model of epidemic

diseasd22] can be generalized to an arbitrary contact net-

IV. RESULTS work and mapped onto a bond percolation model on that

erfletwork with bond occupation probability equal to the trans-

As an example of the application of these results, consid o ) L
the simple version of our model in which all groups have themISSIbIIIty T of the diseas¢23,24). (The transmissibility is

same sizen=r. Thenh(z)=h,(z) and the degree distribu- the mean probability that an infective individual will trans-
tion is dictated solely by the dVistributiamn of the number of mit the disease to a susceptible network neighbor, integrated

groups to which individuals belong. We consider two ex.Over the entire time for which they are susceptib&ince we

amples of this distribution, a Poisson distribution and ahaxz all<ready solveld the bor(;ql tplercol?tlo?h prglbéem ]::(I)rl oglr
power-law distribution. networks, we can also immediately solve the model, by

Let us look first at the Poisson casg= x™e #/m!, for making the substitutiop— pT. We show some results in the

which the calculations are particularly simple. The Poissor{e.fg'k;?nd pansl fOf F'ﬁ" 2 for thf’ same choice of Idﬁgre;a d's.'
distribution corresponds to choosing the members of eacfjiPutions as before. In general, we see a percolation transi-

: . tion at some value of, which corresponds to the epidemic
I forml .F .
g;cau(%)lr:,(\?s%zr:genty and uniformly at random. From Eqs threshold for the mode(denoted byR,=1 in traditional

mathematical epidemiologyAbove this threshold there is a
giant component whose size measures the number of people
(12 infected in an epidemic outbreak of the disease.
The size of the epidemic tends to the size of the giant
component for the network as a whole Bs-1, as repre-

In the right-hand panel of Fig. 2 we show results for thesented by the dotted lines in the figure, and is therefore typi-
size of the giant component as a function of clustering for thecally smaller the higher the value of the clustering coeffi-
case of groups of size=10 with (k)=5. As the figure cient. However, it is interesting to note also that @s
shows, the giant component size decreases sharply as cluzecomes large the epidemic size saturates, becoming virtu-
tering is increased. The physical insight behind this result islly independent off, long before we reachi=1, suggest-
that high clustering means more edges in all componentsng that in clustered networks epidemics will reach most of
including the giant component, than are strictly necessary tthe people who are reachable even for transmissibilities that
hold the component together—there are many redundarare only slightly above the epidemic threshold. This behavior
paths between vertices formed by the many short loops aftands in sharp contrast to the behavior of ordinary fully
edges. Since fixingk) also fixes the total number of edges, mixed epidemic models, or models on random graphs with-
this means that the components must get smaller; the redunut clustering, for which epidemic size shows no such satu-

A. Epidemics

p
1+u(v—=1)/1(v—2)"

(ky=pu(r—1), C=
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ration[22,25. It arises precisely because of the many redunnent. Increasing the clustering also decreases the size of an

dant paths between individuals introduced by the clusteringpidemic for an epidemic process on the network. On the

in the network, which provide many routes for transmissionother hand, it also allows the epidemic to saturate the net-

of the disease, making it likely that most of the individuals work even for quite low infection rates, and it decreases the

who can catch the disease will encounter it by one route ogpidemic threshold. Among other things, this means that no

another, even for quite moderate valuesTof amount of clustering will provide us with a nonzero epi-
As we can also see from Fig. 2, the position of the epi_d.emic threshold in networks with power-law degree distribu-

demic thresholdiecreasesvith increasing clustering. At first  t1ONs.

this result appears counterintuitive. The smaller giant com-

ponent for higher values o€ seems to indicate that the ACKNOWLEDGMENTS

model finds it harder to percolate, and we might therefore 114 author would like to thank Cris Moore Juyong Park

expect the percolation threshold to be higher. In fact, howy g sander, and Duncan Watts for useful conversations. This

ever, the many redundant paths between vertices when clugrork was funded in part by the National Science Foundation
tering is high make it easier for the disease to spread, nQinder Grant No. DMS—0234188.

harder, and so lower the position of the threshold. Thus, clus-

tering has both bad and good sides where the spread of dis- AppENDIX: PROBABILITIES FOR CONNECTED

ease is concerned. On the one hand clustering lowers the GRAPHS

epidemic threshold for a disease and also allows the disease . o . _

to saturate the population at quite low values of the transmis- Equation(8) implies that we can find a general expression
sibility, but on the other hand the total number of peoplefor P(k|K) if we can calculate the numba | of connected
infected is decreased. graphs with a given number of verticéksand number of
edged. The standard method for counting such graphs is to
write down the exponential generating function for possibly
disconnected graphs and perform an inverse exponential

Now consider the case of a power-law degree distributionyransform to give the so-called Riddell formyad]:
Networks with power-law degree distributions occur in many

different settings and have attracted much recent attention X5
[2,6,26,27. Percolation processes on random graphs with % Migy =log
power-law degree distributions notably always have a giant

component, no matter how small the percolation probabilitypytting y— p/q, x—x4/q, and making use of Eq®8), we

[28]. This means, for example, that a disease will alwaysnhen derive the following generating function fB(k|k):
spread on such a network, regardless of its transmissibility.

This result can be modified by more complex network struc- ” 2 xK - 7n2/2x”

ture, such as correlations between the degrees of adjacent k§=:1 q P(k|k)ﬁ=|°9 Z’o q "] (A2
vertices[29,3(, but, as we now argue, it is not affected by

clustering. To see why this is so, note that according to thene sum on the right-hand side is strongly divergent|édr
findings reported here, we would have to reduce clustering tQ-1 pyt progress can be made by allowingp take a non-
increase the threshold above zero, but this is not possiblghysical value greater than 1 and then analytically continu-

starting from a random graph, which h@s=0 to begin with jnq to the physical regime. Using the fact that the Gaussian is
in the limit of large size. C is fundamentally a probability jts own Fourier transform:

and hence cannot take a negative valtathematically, we

can demonstrate that our network always percolates using Y S N P

Eqg. (11). We can create a power-law degree distribution by e = Efxe e“'dz, (A3)
making the distribution of humber of groups an individual

belongs to follow a power law,~m~*. (If we wish, we  {1a sum can be writtef82] as

can also make the distribution of group sizes follow a power

B. Power-law degree distributions

]

k X"
1+ > (1+y)”(”‘1)’2—>. (A1)
n=1 n!

law—it doesn’t change the qualitative form of our resuits. c1 (= o XN

The bond occupation probability, and hence the transmissi- > —| e /zeuzn\ﬂdem

bility, enters Eq(11) through the functiom(z), but does not =1 2w ) '

affectf,(z). We havef}(1)==,m(m—1)r,=(m?)—(m). 1 (= 1

For «< 3, this diverges and hence Ed.l) is always satis- =— expg — —z%xe‘zﬂm) dz, (A4)
fied as long ap andT are both nonzero. V2m) - 2

where we have interchanged the order of sum and integral.
Unfortunately, the integral cannot be carried out in closed
We have introduced a solvable model of a network withform, and although some asymptotic results can be derived

nontrivial clustering and used it to demonstrate, for instanceysing saddle-point expansions, it does not appear at present

that increasing the clustering of a network while keeping thethat a closed-form solution for the generating functig(z),

mean degree constant decreases the size of the giant comggy. (10), can be simply derived.

V. CONCLUSIONS
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